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The reaction between homophthalic anhydride and imines in the presence of TiCl, and diisopropyl ethyl amine is frans-selective. Under these
conditions, the reaction using homochiral imines can be highly diastereoselective, thus allowing the synthesis of enantiopure 1,2,3,4-tetrahydro-

1-oxoquinoline-4-carboxylic acids.

The reaction between cyclic anhydrides and imines to yield
lactams bearing a carboxylate functionality (Scheme 1)
constitutes a convergent route to highly valuable compounds
such as natural products? or topoisomerase I* and HOXA13
inhibitors.*
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The mechanism of this reaction has been controversial,
and both concerted and stepwise mechanisms have been
proposed.’® Kaneti et al.® have reported DFT and MO
calculations on the reaction between succinic anhydride and
imines. These authors concluded that the thermal reaction
takes place via a concerted mechanism (Scheme 1, pathway
A) involving the enolic form of the anhydride. Under these
conditions, the cis-isomer is the major product when (E)-
aldimines and homophthalic anhydride are used.®
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Scheme 1. Possible Routes for the Reaction between Enolizable
Anhydrides and Imines
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AEnol-based concerted pathway. BEnolate-based stepwise mechanism.

In view of these precedents, we decided to explore a
hypothetical Perkin-Mannich route (Scheme 1, pathway B)
in which an enolate derived from the enolizable anhydride
would react with the imine to yield an intermediate contain-
ing the stereochemical information of the new C—C bond.
Subsequent intramolecular cyclization would yield the cor-
responding cyclic amide, probably with a stereocontrol
different to that obtained via pathway A.

To test this hypothesis, we carried out the reaction between
homophthalic anhydride 1 and aldimines 2a—f to yield
racemic 1,2,3,4-tetrahydroisoquinidine carboxylic acids 3a—f
(Scheme 2) in the presence’ of TiCl, and diisopropyl ethyl
amine (DIPEA) as metal source and base, respectively.® The
results obtained, together with those observed for the direct
reaction in the absence of the TiCl,/DIPEA pair, are gathered
in Table 1.

Our results indicate that the direct reaction between 1 and
imines 2a,b is not stereoselective (Table 1, entries 1 and 2),
whereas the reaction with aldimines 2c,d (Table 1, entries
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4760

Scheme 2. Reaction between Homophthalic Anhydride 1 and
Aldimines 2a—e
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3—b5) takes place with high cis-stereocontrol. The reaction
between 1 and (E)-benzylidenemethanamine 2e is trans-
selective (Table 1, entry 5). In contrast, the titanium assisted
version of the reaction takes place with higher stereocontrol,
the trans-derivative being the major one in all the cases
studied. This stereocontrol did not vary significantly when
the reaction between la and 2a was conducted at —20 and
—80 °C. The structures of compounds cis-3a and trans-3e
were confirmed by X-ray diffraction analysis (see the
Supporting Information). The structures of the remaining
products were established by comparison with these com-
pounds and with other analogues reported in the literature.> >
'H NMR analysis of acids 3a—f showed coupling constants
between the vicinal methine protons of ca. 5—6 and 1—2
Hz for the cis and trans stereoisomers, respectively.

To shed some light on the origins of the good stereocontrol
observed in the Perkin-Mannich version of this reaction, we

Table 1. Formation of Compounds (+)-3a—f by Reaction
between Homophthalic Anhydride 1 and Aldimines 2a—e

method A method B
entry reaction cisitrans® yield (%)° cis:trans® yield (%)°
1 1+2a—3a 5050 319, 31° 7:93 60°
2 1+2b—3b 50:50 319, 31° 17:83 76°
3 1+2¢c—3c 94:6 914, 5¢ 3:97 80°
4 1+2d—3d 82:18 474, 11° >2:98 63°
5 1+2e—3e 20:80 74, 63° >2:98 65°
6 1+2f—3f 27:73 237, 62¢ 11:89 45¢

2See Scheme 2 for details.

cis-isomer. © Isolated yield of the trans-isomer.

b Determined by 'H NMR on the crude
reaction mixture. © Isolated yields of pure products. ¢ Isolated yield of the
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carried out DFT®° calculations on the process indicated in

Figure 1. This transformation corresponds to the C—C bond

+19.5
kcal/mol

+18.9
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(0.0) (-0.6 kcal/mol)
-10.7 -10.1
kcal/mol kcal/mol

Figure 1. Transition structures TS1 and T S2 associated with the
C—C bond forming step of the reaction of complex INT 1. Energies
include zero-point vibrational energy (ZPVE) corrections and have
been calculated at the B3LYP/6—31G*&LANL2DZ level. Numbers
in parentheses correspond to the relative energy differences.

forming step in the reaction between glutaconic anhydride
and methanimine.

Many mechanistic studies dealing with the TiCl,/amine
system assume that the active enolates are neutral
(C=C—OTiCls) species'* and/or anionic (C=C—OTiCl,")
complexes.*? A recent paper™ has reported the presence of
anionic titanium enolate complexes (C=C—OTiCl,™) in
which the most stable form has significant biradical character.
The corresponding triplet species was characterized by
electron paramagnetic resonance. We carried out single point
calculations on the optimized structure of INT1 at the
CASSCF(4,4) and CASSCF(8,10) levels to assess its hypo-
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thetical biradical character. Our results indicated that the
electronic structure of INT1 is closed shell in nature. For
instance, the natural occupancies of the four active MOs of
the CASSCF(8,10) calculation were 1.945, 1.964, 1.969, and
1.944. In addition, the triplet state was found to be 32.1 kcal/
mol higher in energy than the singlet. These results indicate
that the more basic nitrogen atom of the iminic moiety in
INT2 does not favor the stabilization of biradicals.

We also located and characterized two different saddle
points associated with the transformation depicted in Figure
1. For this model system TS2, which has a boat conforma-
tion, is more stable than the sofa transition structure TSL1.
CASSCF(8,10) single point calculations on both transition
structures also resulted in closed shell electronic structures.
The intermediate product of this C—C bond forming step is
INT2, whose intramolecular cyclization must yield the
correponding cyclic amide, as is shown in Scheme 1.
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Figure 2. Transition structures TSla and TS2a associated with
the C—C bond forming step leading to cis- and trans-3e from 1
and imine 2e. See the caption of Figure 1 for additional details.

The anionic routes shown in Figure 2 were also explored.
This second reaction corresponds to the first step in the
reaction between 1 and (E)-2e. In this case, saddle point T S3,
which has a sofa conformation and leads to trans-3e, was
found to be more stable than T $4, because of the larger steric
demand between one chlorine atom of the octahedral
environment of the titanium and the phenyl group of the
imine. Because T$4 leads to the formation of cis-3e, the
trans- stereochemical control in this Perkin-Mannich route
stems from the lower energy of transition structures similar
to TS3.
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Scheme 3. Reaction between Homophthalic Anhydride 1 and
Enantiopure Imines 2g—i®
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#Numbers in parenthesis correspond to yields of isolated pure products.

The diastereomeric excess (de, in brackets) was determined by 'H NMR
on the crude reaction mixture.

Our next step in this preliminary study was to extend the
trans-stereocontrol observed in the titanium route to homo-
chiral imines. We observed that enantiopure imine 2g in the
presence of the TiCl,/DIPEA system at room temperature
yielded a single diastereomer 3g (Scheme 3), whose structure
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was determined by X-ray diffraction analysis (see the
Supporting Information). This stereocontrol was observed
to be lower when the reaction was carried out between 1
and imines 2h,i (Scheme 3). In these cases, compounds 3 h’
and 3i' were also obtained, although the trans-stereoselec-
tivity was kept. The stereochemistry of 3i" was also confirmed
by X-Ray diffraction analysis (see the Supporting Informa-
tion).

In summary, we have shown that trans-stereoselectivity
can be obtained in the reaction between homophthalic
anhydride and imines. This stereocontrol is achieved by
means of the TiCl,/DIPEA pair. If enantiopure imines are
used, the corresponding homochiral derivatives can be
obtained, especially when the N-substituent is the source of
chirality.
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